Variational Texture Synthesis with Sparsity and Spectrum Constraints
نویسندگان
چکیده
منابع مشابه
Texture Synthesis with Recurrent Variational Auto-Encoder
We propose a recurrent variational auto-encoder for texture synthesis. A novel loss function, FLTBNK, is used for training the texture synthesizer. It is rotational and partially color invariant loss function. Unlike L2 loss, FLTBNK explicitly models the correlation of color intensity between pixels. Our texture synthesizer 1 generates neighboring tiles to expand a sample texture and is evaluat...
متن کاملSurface inpainting with sparsity constraints
In this paper we devise a new algorithm for completing surface with missing geometry and topology founded upon the theory and techniques of sparse signal recovery. The key intuition is that any meaningful 3D shape, represented as a discrete mesh, almost certainly possesses a low-dimensional intrinsic structure, which can be expressed as a sparse representation in some transformed domains. Inste...
متن کاملTrading Accuracy for Sparsity in Optimization Problems with Sparsity Constraints
We study the problem of minimizing the expected loss of a linear predictor while constraining its sparsity, i.e., bounding the number of features used by the predictor. While the resulting optimization problem is generally NP-hard, several approximation algorithms are considered. We analyze the performance of these algorithms, focusing on the characterization of the trade-off between accuracy a...
متن کاملVariational equations with constraints
In this paper we deal with a constrained variational equation associated with the usual weak formulation of an elliptic boundary value problem in the context of Banach spaces, which generalizes the classical results of existence and uniqueness. Furthermore, we give a precise estimation of the norm of the solution.
متن کاملOnline Linear Optimization with Sparsity Constraints
We study the problem of online linear optimization with sparsity constraints in the 1 semi-bandit setting. It can be seen as a marriage between two well-known problems: 2 the online linear optimization problem and the combinatorial bandit problem. For 3 this problem, we provide two algorithms which are efficient and achieve sublinear 4 regret bounds. Moreover, we extend our results to two gener...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Imaging and Vision
سال: 2014
ISSN: 0924-9907,1573-7683
DOI: 10.1007/s10851-014-0547-7